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Fermion coupling to Chern-Simons theories with 
higher-order Lagrangian in (2 + 1) dimensions 

A Grecoi, C Repettot, 0 P Zandront and 0 S Zandronf 
Facultad de Ciencias Exactas Ingenieria y Agrimensua de la UNR, AV. Pellegrini 250.2000 
Rosmo. Argentina 

Received 7 Januarj 1993 

Abstract. The classical and quantum formalism for ule constrained Hamiltonian systzm with 
singular higherdrder Lagrangian describing the Fermion coupling to ChemSinwns thmies in 
(2 i- I )  dimensions is ConsLRrcted. We petform the cmnonical and path-integral quantizations for 
the Abelian cue. The non-Abelian case is also discussed. 

1. Introduction 

Different quantum field theories in (2+1) dimensions have been investigated with increasing 
interest in the past few years. Several interesting problems are present in the ( 2  + 1) 
dimensional planar physics [l]. For instance. for some time it is known how charged planar 
matter interacting with ‘photons’ whose dynamics is governed by the Maxwell Lagrangian 
plus a Chern-Simons (CHS) term, gives rise to topologically massive (2  + 1)-dimensional 
electrodynamics [2 ] .  The addition of the CHS term to the Maxwell action leads to a modified 
Gauss law with the important consequence that any charged excitation also carries a magnetic 
flux, which is proportional to the charge. 

More recently the quantum mechanics coupled to the gauge field, which has the CHS 
term as the action, was considered [3]. The generalized Hamiltonian formalism was 
constructed and the canonical and the path-integral quantizations were performed. The 
CP’ model with the CHS term coupled to a charged fermion, as a possible model for the 
high T, superconductivity was also treated [4]. In [4], the canonical and the path-integral 
quantization methods for this coupled system were developed and the BoseFermi statistics 
transmutation was discussed. 

Moreover, pure U( 1) and Sum) CHS theories and topologically massive theory in (2+ 1)  
dimensions were quantized by means of the Dirac formalism [SI. The constraint sbiucture 
and the symmetry properties of the dynamical system were analysed. 

The dynamical unitary and possible renormalizable topologically massive three- 
dimensional gravity was also investigated [6] .  

On the other hand, the conformal supergravity in (2+ 1) dimensions can be described by 
a CHS term [7]. The conformal gravity models present two important features. First, these 
models show that local symmetry can exist in flat space-time and moreover, the conformal 
gravity in three dimensions is finite and exactly soluble [8]. Second, the requirement 
of complete invariance under all local symmetries implies constraints on curvatures, and 
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consequently the higher-derivative character of the conformal theory is made evident 
when the second-order formalism is carried out. Hence, due to the appearance of higher 
derivatives, the definition of canonical variables and the construction of the Dirac formalism 
for this constrained Hamiltonian system is non-trivial [9]. 

The dynamical systems described in terms of higher derivatives have been studied by 
several authors [lo] and constitute an interesting problem of current research in quantum 
field theory. 

As already mentioned above, the interest to consider higher derivative terms exists 
because of the possible application of these models to high Tc superconductivity. 

Other motivation for considering this kind of theory is due to the fact that by 
adding terms highly derived in the Lagrangian, they can be used for regularizing 
ultraviolet divergences in the quantum theory. Likewise, this compels us to reconsider 
the renormalizability problem in these models. A complete answer about this question only 
could be given once the diagrammatic of the model is done. We can expect. as it occurs in 
the usual interacting CHS theories with matter 11 I], that in our case the theory also can be 
renormalized in some regimes. 

Another important question, not treated in the present paper, is the unitarity problem. It 
is well known that in higher derivative gauge theories it is possible that the unitarity can be 
violated when ghost states with negative norm are present. This problem is related with the 
form of the effective interacting Lagrangian and the expression of the effective propagator 
of the boson field highly derived. 

To solve these two questions we need to make known the Feynman rules and to construct 
the diagrammatic. In a forthcoming advanced paper, we treat extensively these topics with 
the aim of giving, as well as possible, an answer to these questions. 

Therefore, in the present paper we begin by constructing the classical and quantum Dirac 
formalism for the constrained Hamiltonian system with singular higher-order Lagrangian 
describing the fermion coupling to CHS theories in (2 + 1) dimensions. We perform 
the canonical and the path-integral quantizations. This last approach is accomplished by 
extending the Faddeev-Senjanovic method [I21 to the higher-derivative case. 

The paper is organized as follows. In section 2, we construct the classical generalized 
Hamiltonian formalism for the Abelian case, working as closely as possible to the Dirac 
prescriptions. By means of the Ostrogradski transformation [13] the momenta are inhnduced 
and so, the primary constraints remain defined and the extended Hamiltonian can be written. 
In section 3, after the complete set of constraints are analysed and classified, the Dirac 
brackets can be found. Next we perform the canonical quantization. In section 4, we 
carry out the path-integral quantization by extending the Faddeev-Senjanovic method to the 
higher-derivative system under consideration. In section 5, we discuss the generalization of 
the method to the non-Abelian case. 

2. Classical generalized Hamiltonian formalism 

Our starting point is to consider the matter coupling to Abelian CHS theories in (2 -4- 1) 
dimensions. The system is described by a singular Lagrangian density containing higher- 
derivative terms given by: 

where Cup is the electromagnetic Lagrangian density with a topological mass term, i.e. a 
CHS term, and it is given by 

L=Lcop+Lk+Lf +Lint  (2.1 ) 

1 K 

4 4n 
Cup = --FpF,,F'" + --EpYPa,,A,A,. 
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The other pieces of the total Lagrangian density are written: 
C 

Ln = --a#F,"aPFFu (2.W 4n 

Lint = e$y"*A,. (2.24 

The field strength tensor is written in terms of potentials in the usual way F,, = 
a,A, - lJvA,, (p. v = 0, 1 ,2  denoting the space-time components), c is a dimensional 
coupling constant and K is the topological mass of the gauge field. The kinetic fermionic 
term is included in the general form by using the parameter a 1141. Throughout this paper 
we use the convention E"' = E'* = 1, the Minkowski metric g,,. = diag(1, -1, -1) and 
the Dirac y-matrices yo = u3, y' = io' and y 2  = io2 (us are the Pauli matrices)., 

Let us consider the following independent dynamical field variables A,,, B, = A,, 
and &). By means of the Ostrogradski transformation the following canonical momenta 
can be introduced: 

ae 
a 4 

Q* = - 

(2.3a) 

(2.36) 

(2.3~) 

(2.34 
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we can see that these equations give rise to the following primary constraints 
Q""(x) = @ ( x )  M 0 

By meam of the momenta given in equation (2.3), the canonical Hamiltonian density 
remains defined as follows: 

' H ~  = B,PJJ + b, QJJ + $tm)n(m) + fi@)& - L. (2.7) 

Once the Lagrangian density (2.1) is used and the velocities b,, &) and $(e) are 
eliminated, the final expression for 'Hm is: 

'H~,=B,P ' - -QiQi+aiBoQi+-F, jFi j+-B,Bi+-aiAoaiAo-BB,a iAo 
rr 1 1 1 
2c 4 2 2 

Now, from equations (2.5) and (2.7) we can write the extended Hamiltonian (first-class 

(2.9) 

generator of time evolutions of generic functionals. The Hamiltonian density 'HT remains 
defined by: 

dynamical quantity): 

HT = j d2x 'HT 

'HT = 'Hem + W O )  + i(.)@p'~' + (2.10) 
where 8 is a bosonic Lagange multiplier, and 

Now, we must go on with the Dirac's algorithm and impose the consistency conditions 
on the constraints @('-I) according to Q f k )  = 6(k-i) = [@('-I), H T ]  % 0. Hence for the 
bosonic constraint @(") we find the following secondary constraints: 

@ ( I )  = [@", H ~ ] ~ ~  = -P 0 + a i @  E O  (2.11a) 

@(U = &(I) = [@(I), nTlPs = -a ip i  - -aiAkdk - e$yo+ M o (2.11b) 

and .&a) are fermionic. 

. K  

4rr 
and the consistency for @@)(x) is automatically satisfied. 

determine the Lagrange multipliers &,) and ,I(@) respectively and they are written: 
Next the consistency conditions for the two fermionic constraints Q(a) (x)  and & ) ( x )  

= - ( & $ y ' ~ ~ ) c ~ )  % im(6y0)(,)  - ieA,($y'yOha) (2.12a) 

= (vov'ai!b),,) + im(y0$hW) - ieA,(yOy'@.)(,). (2.12b) 
At this point by computing the Poisson brackets among the constraints it is easy to 

conclude that the constraints Qco'(x)  and @ " ' ( x )  are first-class while the constraints Q(')(x),  
are second-class. So. the constraints @(O)(x)  and @ ( ' ) ( x )  correspond to gauge 

invariances of the theory under local gauge transformations. 
and 
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3. Dirac brackets and canonical quantization 

As we have seen, the number of second-class constraints is three, Hence, the determinant 
of the matrix composed of them vanish. That means that they are not independent of each 
other. As is usual, there is at least one suitable linear combination of the second-class 
constraints which give rise to another first-class constraint. The new first-class constraint 
we can find is given by: 

K n(x) = -ie(Jn + R$) - -&A .dk - a, P' ~3 0. (3.1) 

Therefore, the final set of constraints is given by: (i) the three first-class constraints 
@(O)(x), @(l)(x) and S2(x);  (ii) the two second-class constraints @ ( # ) ( x )  and &(=) (x) .  

Thus, we have arrived at the stage to construct the Dirac brackets which allow us to 
treat the second-class constraints as strongly equal to zero equations. 

The Dirac brackets for variables O I ( X )  and Oz(y) are defined by: 

[ol(x), oZ(y)]* = [ol(x), oZ(Y)IPB - [ol(x), w,IPBA"*[%, oZ(Y)IPB 

4x ' 

(3.2) 

where the matrix Aab is the inverse of the matrix constructed with the elements [Yo, qf,]pB 
involving the remaining second-class constraints Le: Aab[YJ*, wc]pB = 8:. and it results: 

(3.3) 

Now, by using the definition (3.2) we can obtain the Dirac brackets among dynamical 
variables. We write only the non-vanishing Dirac brackets which are modified with respect 
to the Poisson ones. That is to say, in the present case, brackets involving only fermionic 
dynamical variables. So the field-field brackets are: 

The field-momentum brackets are: 

and finally the momentum-momentum brackets are written: 

i 
V = b , ( x ) ,  fi(,)(Y)l* = p- Nvo)ca,cm,Kx - Y) 

(3.4a) 

(3.4b) 

(3.5a) 

(3.5b) 

( 3 . 6 ~ )  

[n(&), ft(,d~)i* = p i z  - I ) ( V ~ ) ( , , ~ W  - Y ) .  (3.6b) 

Looking at the equation (3.2) we see that the Dirac brackets and the Poisson brackets for 
the bosonic variables are identical. As was commented above, the system can be canonically 
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quantized by using the Dirac brackets and taking the second-class constraints as strongly 
equal to zero equations. Then the Hamiltonian system for this higher-derivative theory is 
described by the following total Hamiltonian: 

H; = [ d2x (?.I,, t a@'') + 6 @ ( ' )  + cC2) (3.7) 

where a ,  b ,  c are three arbitrary parameters, 
The three first-class constraints are written: 

( 3 . k )  

(3.86) 
K n(x) = -ie(&)(x)n'"(x) + f I ' u ) ( x ) $ e a ) ( x ) )  - -3,Aj(x)&'j - a,P'(x) S O  ( 3 . 8 ~ )  

and they correspond to the gauge symmetries of the system. Now, to complete the 
quantization, the brackets defined in (2.34 b), (3.41, (35j and (3.6) are replaced into the 
equal-time (anti) commutators according to the rule: 

47r 

(3.9) 
1 

[OI(X), O*(Y)]D + ,[b162 - ( - l ) '~~~ 'o~~b2611 

where \Oil = 0 (or 1) when 0; is bosonic (or fermionic). 
Hence, the equal-time (anti) commutators become: 

i 
h 

i 
h 

i 

[A , (x ) ,  P"(y)]T = -:*S;S(x - Y) 

[ B M ( x ) ,  Q " ( ~ ) l r  = --S;S(x - Y) 

[$(&)I $O(Y)lr = ;(vo)c.,ca,W - Y). 

( 3 .  loa) 

(3. lob) 

( 3 . 1 0 ~ )  

We can conclude that the first-class constraints given in equations (3.8) and the 
corresponding three gauge fixing conditions that we must determine, restrict the phase 
space variables to the physical one, and so the true Hilbert space is obtained. 

4. Path-integral quantization 

The path-integral quantization is accomplished according to FaddeevSenjanovic method 
[12]. By extending the expression of 1121 for the partition function to higher-order theories 
we obtain: 

Z = dA, dP' dB, d e "  d$,,) dn"' d@r(p) dn"' 6(@")S(@"))s(C2)S(fi)S(fi)6(f3) 

x W Q e 0 ' ,  @ ( I ) ,  a, fi, fi, f 3 1 F ~ ( @ ( w ) ) ~ ( @ ~ , ~  det[@(.), @cad 
s 
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In all the above expressions [orl ,  or*, . . . , an]* is the matrix where each component is the 
Dirac bracket among or,, or?, . . . , or,. With the exception of fl, f2 and f3 all the quantities 
were defined below. The quantities f1, f2 and f3 are gauge fixing conditions. The gauge 
fixing conditions must satisfy det[fiOjI* # 0 for all first-class constraints @ j .  Moreover, 
the gauge fixing conditions fi must be compatible with the equation of motion. 

Let us assume the gauge fixing conditions 

fi = &A' % 0 (4.W 

fz = Bo % 0 (4.2b) 

(4 .2~)  

which are admissibles. The condition fi is the Coulomb gauge while fz and f3 are 
consistents with the equation of motion derived from the Lagrangian density (2.1) as can 
be proved. 

C f3 = -v K 2  A0 f e&'.$ k - ;  (!by !b) + 0 (1 - -0) &&Eik % 0 
2Jr R 

The matrix [@(O). @(I) ,  0, f i ,  f2, f3Y is written as follows: 

0 0 0 O A O  
0 0 O O B  

[@", @ ( I ) ,  Q, f i ,  fz, fd* = 

- A 0  0 0 0 0  
0 - E - D O 0 0  

where A, E ,  C and D are given by 

A = -S(x - y) 

B = -V2S(x - y) 
K 

2x 

c = V26(X - y) 

D = [Q(x), f3(Y)I*. 

(4.4a) 

(4.4b) 

(4.4c) 

(4.44 

The determinant of the matrix (4.3) does not depend on D and so, it is independent of 
the field variables and we obtain: 

(4.5) 
K 2  

det[@o), d'), Q, fi, fi, fd" = (27) (V2)4W - Y) 

and 

det[&,(,), = iS(x  - y).  (4.6) 

By performing the path-integrals over the fields Bo, PP, Q P ,  n@), fI") we arrive at: 

Z = dA,dBi d~(,,d!b(B)G(fi)S(f3)expi[S,al (4.7) s 
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where the effective action Ser is defined by 

C 
--a;Ao)(B, - & A @ )  - -(aiF,,aiF"+aoFjjaoFi,) 4n 

(4.8) 

As it can be seen from the last expression, we have written the quantum problem in 
terms of a path-integral in which we have four independent fields. This is an important 
advance because the problem can be treated with all the powerful techniques present in 
the Feynman path-integral theory. The diagrammatic technique is an interesting example. 
In principle, it is straightforward to go to the Feynman rules, propagators and vertices, 
from a path-integral defined in terms'of independent fields [ E ] .  It is possible to treat the 
equation (4.7) for the quantum partition function similarly as it was done for the shell model 
in the framework of the solid state physics [16]. This equation can be written as follows: 

Z = dA, dBi d& d$(B, dA1 dA3 expi[S'] (4.9) s 
where 

s * = S e r - A ~ f i  -A3f3 (4.10) 

and A I ,  A3 are Lagrange multipliers. 
At this stage, from the quantum partition function (4.9), we must recognize propagators 

and vertices. To do this we can follow the steps of [15]. A bosonic vector quantity 
Xz (where the compound index is E = 0.1, . . . ,6) whose components are given by the 
remaining independent fields A,, Bi, A1 and A3 can be defined. So, when the action S* is 
written in terms of this vector quantity, it is in principle easy to recognize the propagators 
defined by the quadratic part of the Lagrangian and the rest is represented by vertices. 
Consequently, the equation (4.10) can be seen as an effective action for a system that 
describes the boson vector field Xx interacting with a Dirac spinor. As it was commented 
in the introduction, we are still working in another paper where the Feynman rules and the 
diagrammatic for this system are treated extensively. 

5. Generalization to the non-Abelian case 

As we will see the non-Abelian case is different enough to the Abelian one, which relates 
to the constraint structure. Now, the fields write $ = $4t ' ,  A, = AEP, 6, =,Bito and 
F,, = F;,tY = a,A, - a,A, + [A,, A,].  The t" are the generators of the Lie algebra 

and a ,  b, c denote group representation indices. The field strength components are written 

(5.1) 

associated to the gauge group SU(N), i.e: [ tu,  t b ]  = f t , tr(tQtb) = S'b, tr(PPt') = fabc 

F:" = a,At -&A:  + f abc AHA, .  b c 
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To write the Lagrangian density, the trace in the Yang-Mills space must be performed. 
Thus, in the non-Abelian case the piece Ltop of the Lagrangian density for topologically 

massive Sum) gauge theory (equivalent to the equation (2.2a)) is given by: 

Lmp = --tr(F,,F"") + -&"""tr a,A,A,  + -A,A,A, )  2 ( 3 
1 K 

4 4n 

( Ir ,). (5.2) - - - F a  1 F'W' + -&PUP K a,A:A; + f f a b c A a A b A '  - 
4 P" 4n 

Analogously the other paris equivalent to the equations (2.26, c, a') can be written. 
The momenta Pa", Q"", IT$, and i?&, are now written as follows: 

pap = FWo + -&~W'A; K + -fabCA C a FbPU - - a o a o ~ 4  C - - V Z F W O  C - -ai&Fwi c 
" 0  4n R n x n 

(5.34 

QaF = -&,FaWO (5.3b) 
c 
H 

(5.3c) 

(5.34 

The three primary constraints are: 

The total Hamiltonian is written: 

@ - A  = @&A + p @ p  + rf)opa (a1 + 4" ('71 ~ 0 1  = (5.5) 

where 'HZA writes formally as the equation (2.7) plus the term %ei] f Q b c A ~ A ~ A ~ .  Of 
course the expressions (5.1) and (5.3) for F$ and the momenta respectively must be used 
and the trace in the YangMills space must be made. 

As in the Abelian case, when the consistency condition on the constraints are 
implemented, the two fermionic primary constraints determine the set of Lagrange 
multipliers h b  and ".$,. 



(5.6~) 

When the consistency condition on 0L3) (x )  is imposed, the equation Oh4)(x) = 0 is 
obtained. Hence, this equation allows us to determine the Lagrange multipliers 6'. 

At this point we can see that the non-Abelian case has a different constraint structure. 
In this case, none of the primary constraints is first-class and we have one more secondary 
and second-class constraint. The explicit computation of the final set of constraints for 
the non-Abelian case is not completed here. It involves a tedious algebra, although it is 
straightforward. Anyway, we can conclude that analogously to the Abelian case, the first- 
class constraints can be recovered by finding suitable linear combinations from the second- 
class ones. Once more, these first-class constraints correspond to the gauge symmetries 
of the non-Abelian model. Subsequently, to carry out the canonical Duac quantization 
formalism, we must proceed as in section 3. 

6. Conclusions 

In this paper the classical and quantum generalized Hamiltonian formlism for the fermions 
coupled to CHS gauge theories with a higher-order Lagrangian in (2 + 1) dimensions was 
constructed. The quantization for the Abelian case was made by using both the canonical 
Dirac algorithm and the path-integral method. As was shown, the treatment of constraints 
involves some subtleties which are present only in this kind of higher-derivative Lapngian  
theory. To analyse this singular higher-derivative system, we have worked as closely as 
possible to the Dirac prescriptions [16], Hence the total Hamiltonian of the system as first 
class dynamical quantity can be found. Moreover, the canonical quantization is completed 
by giving all the remaining (first-class) weakly zero constraints and all the non-trivial equal- 
time (anti) commutators. The path-integral quantization Is also very interesting because 
we can satisfactorily solve the partition function by using a natural generalization of the 
Faddeev-Senjanovic method. This was possible because we can find a set of compatible 
gauge fixing conditions which satisfy del[&. Oj]' # 0, being this equation independent of 
the fields. Finally, as was shown, the non-Abelian case can also be solved in the framework 
of the formalism. 
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